Microstructural and molecular level characterisation of plastic crystal phases of pyrrolidinium trifluoromethanesulfonyl salts
نویسندگان
چکیده
Ambient temperature conductive plastic crystal phases of alkylmethylpyrrolidinium trifluoromethanesulfonyl amide (TFSA) salts are studied using positron annihilation lifetime spectroscopy (PALS) to examine the role of vacancy size and concentration in conductivity. The ethyl methylpyrrolidinium TFSA salt (P12 TFSA) has larger vacancies and a greater concentration of vacancies than the dimethylpyrrolidinium TFSA salt (P11 TFSA) over the temperature range investigated. The relative vacancy size and concentration vary with temperature and reflect the solid–solid transitions as measured by differential scanning calorimetry (DSC). P12 TFSA has greater conductivity than P11 TFSA and has furthermore been observed to exhibit slip planes at room temperature. P12 TFSA has greater entropy changes associated with solid–solid phase transitions below the melting point than P11 TFSA possibly indicating greater rotational freedom in P12 TFSA. These results support the notion that the diffusion, conduction, and plastic flow properties of the pyrrolidinium TFSA salts are derived from the lattice vacancies. Crown Copyright D 2002 Published by Elsevier Science B.V. All rights reserved. PACS: 72.80.Le; 78.70.Bj
منابع مشابه
Structure and Dynamics in an organic ionic plastic crystal , N - ethyl - N - methyl pyrrolidinium bis ( trifluoromethanesulfonyl ) amide , mixed with a sodium salt .
We present for the first time, the solid state phase behaviour of the organic ionic plastic crystal (OIPC) N-methyl-N-ethyl-pyrrolidinium bis(trifluoromethane-sulfonyl)amide, [C2mpyr][NTf2], upon mixing with the sodium salt, Na[NTf2]. Whereas the behaviour of OIPCs mixed with lithium salts has been well established, the influence of adding a sodium salt has not previously been reported. The pha...
متن کاملParamagnetic ionic plastic crystals containing the octamethylferrocenium cation: counteranion dependence of phase transitions and crystal structures.
In recent years, ionic plastic crystals have attracted much attention. Many metallocenium salts exhibit plastic phases, but factors affecting their phase transitions are yet to be elucidated. To investigate these factors, we synthesized octamethylferrocenium salts with various counteranions [Fe(C5Me4H)2]X ([1]X; X- = B(CN)4-, C(CN)3-, N(CN)2-, FSA (= (SO2F)2N-), FeCl4-, GaCl4- and CPFSA (= CF2(...
متن کاملSurface Hardness Measurment and Microstructural Characterisation of Steel by X-Ray Diffraction Profile Analysis
An X-ray diffraction line will broaden considerably when steels change into martensitic structure on quenching. The results presented in this paper show that X-ray diffraction technique can be employed for a rapid and nondestructive measurement of hardness of hardened steel. Measurement on various quenched and tempered steels showed that the breadth of its diffraction peak increased with increa...
متن کاملPhysicochemical properties and plastic crystal structures of phosphonium fluorohydrogenate salts.
Fluorohydrogenate salts of quaternary phosphonium cations with alkyl and methoxy groups (tetraethylphosphonium (P(2222)(+)), triethyl-n-pentylphosphonium (P(2225)(+)), triethyl-n-octylphosphonium (P(2228)(+)), and triethylmethoxymethylphosphonium (P(222(101))(+))) have been synthesized by the metatheses of anhydrous hydrogen fluoride and the corresponding phosphonium bromide or chloride precurs...
متن کاملMolecular insights: structure and dynamics of a Li ion doped organic ionic plastic crystal.
A molecular-level understanding of why the addition of lithium salts to Organic Ionic Plastic Crystals (OIPCs) produces excellent ionic conductivity is described for the first time. These materials are promising electrolytes for safe, robust lithium batteries, and have been experimentally characterised in some detail. Here, molecular dynamics simulations demonstrate the effects of lithium ion d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002